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BACKGROUND OF INVENTION

Field of the invention

[0001] This invention relates to the problem of constructing a reliable pitch spelling algorithm—that

is, an algorithm that reliably computes the correct pitch names (e.g., C]4, B[5 etc.) of the notes in a

passage of tonal music, when given only the onset-time, MIDI note number and possibly the duration of

each note in the passage.

[0002] There are good practical reasons for attempting to develop a reliable pitch spelling algo-

rithm. First, until such an algorithm is devised, it will be impossible to construct a reliable MIDI-to-

notation transcription algorithm—that is, an algorithm that reliably computes a correctly notated score of

a passage when given only a MIDI file of the passage as input. Commercial music notation programs (e.g.,

Sibelius (www.sibelius.com), Coda Finale (www.codamusic.com) and Nightingale (www.ngale.com))

typically use MIDI-to-notation transcription algorithms to allow the user to generate a notated score

from a MIDI file encoding a performance of the passage to be notated. However, the MIDI-to-notation

transcription algorithms that are currently used in commercial music notation programs are crude and

unreliable. Also, existing audio transcription systems generate not notated scores but MIDI-like repre-

sentations as output (see, for example, Davy, M. and Godsill, S. J. (2003). Bayesian harmonic models

for musical signal analysis (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M.

Smith, editors, Bayesian Statistics, volume VII. Oxford University Press. Draft available online at

http://www-sigproc.eng.cam.ac.uk/~sjg/papers/02/harmonicfinal2.ps). So if one wishes to pro-

duce a notated score from a digital audio recording, one typically needs a MIDI-to-notation transcription

algorithm (incorporating a pitch spelling algorithm) in addition to an audio transcription system.

[0003] Knowing the letter-names of the pitch events in a passage is also indispensible in mu-

sic information retrieval and musical pattern discovery (see, e.g., Meredith, D., Lemström, K., and
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Wiggins, G. A. (2002). Algorithms for discovering repeated patterns in multidimensional representa-

tions of polyphonic music. Journal of New Music Research, 31(4), 321–345. Draft available online at

http://www.titanmusic.com/papers/public/siajnmr submit 2.pdf). For example, the occurrence of

a motive on a different degree of a scale (e.g., C-D-E-C restated as E-F-G-E) might be perceptually sig-

nificant even if the corresponding chromatic intervals in the patterns differ. Such matches can be found

using fast, exact-matching algorithms if the pitch names of the notes are encoded, but exact-matching

algorithms cannot be used to find such matches if the pitches are represented using just MIDI note num-

bers. If a reliable pitch spelling algorithm existed, it could be used to compute the pitch names of the

notes in the tens of thousands of MIDI files of works that are freely available online, allowing these files

to be searched more effectively by a music information retrieval (MIR) system.

[0004] In the vast majority of cases, the correct pitch name for a note in a passage of tonal music

can be determined by considering the rôles that the note is perceived to play in the perceived harmonic

structure and voice-leading structure of the passage. For example, when played in isolation in an equal-

tempered tuning system, the first soprano note in Figure 1a would sound the same as the first soprano

note in Figure 1b. However, in Figure 1a, this note is spelt as a G]4 because it is perceived to function

as a leading note in A minor; whereas in Figure 1b, the first soprano note is spelt as an A[4 because it

functions as a submediant in C minor. Similarly, the first alto note in Figure 1b would sound the same

as the first alto note in Figure 1c in an equal-tempered tuning system. However, in Figure 1b the first

alto note is spelt as an F\4 because it functions in this context as a subdominant in C minor; whereas,

in Figure 1c, the first alto note functions as a leading note in F] minor so it is spelt as an E]4.

[0005] Nevertheless, it is not always easy to determine the correct pitch name of a note by consid-

ering the harmonic structure and voice-leading structure of its context. For example, as Piston observes,

the tenor E[4 in the third and fourth bars of Figure 2 should be spelt as a D]4 if one perceives the

harmonic progression here to be +II2− I as shown. But spelling the soprano E[5 in the fourth bar as D]5

would result in a strange melodic line (see p. 390 of Piston, W. (1978). Harmony . Victor Gollancz Ltd.,

London. Revised and expanded by Mark DeVoto.)

[0006] Such cases where it is difficult to determine the correct pitch name of a note in a tonal

work are relatively rare—particularly in Western tonal music of the so-called ‘common practice’ period

(roughly the 18th and 19th centuries). In the vast majority of cases, those who study and perform

Western tonal music agree about how a note should be spelt in a given tonal context. Therefore a pitch

spelling algorithm can be evaluated objectively by running it on tonal works and comparing the pitch

names it predicts with those of the corresponding notes in authoritative published editions of scores of

the works. However, this can only be done accurately and quickly if one has access to encodings of these

authoritative scores in the form of computer files that can be compared automatically with the pitch
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spelling algorithm’s output. Fortunately, a large collection of encodings of Western notation scores is

available on the web at www.musedata.org.

Description of the Related Art

[0007] In order to obtain a clearer idea of the ‘state of the art’ in the field, three pitch spelling

algorithms were run on two test corpora and their performance was compared. The algorithms compared

were those of Cambouropoulos, Longuet-Higgins and Temperley (see Cambouropoulos, E. (2003). Pitch

spelling: A computational model. Music Perception, 20(4), 411–430; Longuet-Higgins, H. C. (1987).

The perception of melodies. In H. C. Longuet-Higgins, editor, Mental Processes: Studies in Cognitive

Science, pages 105–129. British Psychological Society/MIT Press, London, England and Cambridge,

Mass.; and Temperley, D. (2001). The Cognition of Basic Musical Structures. MIT Press, Cambridge,

MA.). In an initial pilot study, the test corpus used was the first book of J. S. Bach’s Das Wohltemperirte

Klavier (BWV 846–869), which contains 41544 notes. Then a larger-scale comparison was carried out

using a corpus containing 1729886 notes and consisting of 1655 movements from works by 9 baroque

and classical composers (Corelli, Vivaldi, Telemann, Bach, Handel, B. Marcello, Haydn, Mozart and

Beethoven). Both corpora were derived from the MuseData collection of encoded scores (see Hewlett,

W. B. (1997). MuseData: Multipurpose representation. In E. Selfridge-Field, editor, Beyond MIDI: The

Handbook of Musical Codes, pages 402–447. MIT Press, Cambridge, MA.).

[0008] Each encoding in these two test corpora consisted of an OPND representation (OPND

stands for “onset, pitch-name, duration”). Each OPND representation is a set of triples, 〈t, n, d〉, each

triple giving the onset time, t, the pitch name, n, and the duration, d, of a single note (or sequence of

tied notes) in the score. The onset time and duration of each note are expressed as integer multiples of

the largest common divisor of all the notated onset times and note durations in the score. For example,

Figure 3b gives the OPND representation of the score in Figure 3a. Note that within each pitch name

in an element in an OPND representation, each flat symbol is represented by an ‘F’ character and each

sharp symbol is represented by an ‘S’ character (double-sharps are denoted by two ‘S’ characters, so, for

example, F 4 is denoted by “FSS4”.)

Longuet-Higgins’s algorithm

[0009] Pitch spelling is one of the tasks performed by Longuet-Higgins’s music.p program (see

Longuet-Higgins, H. C. (1987). The perception of melodies. In H. C. Longuet-Higgins, editor, Men-

tal Processes: Studies in Cognitive Science, pages 105–129. British Psychological Society/MIT Press,

London, England and Cambridge, Mass.). The input to music.p must be in the form of a list of triples,

〈p, ton, toff〉, each triple giving the “keyboard position” p together with the onset time ton and the offset
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time toff in centiseconds of each note. The keyboard position p is just the MIDI note number minus

48. So, for example, the keyboard position of middle C is 12. Longuet-Higgins intended the music.p

program to be used only on monophonic melodies and explicitly warns against using it on “accompanied

melodies” or what he calls “covertly polyphonic” melodies (i.e., compound melodies).

[0010] The algorithm computes a value of “sharpness” q for each note in the input. The sharpness

of a note is a number indicating the position of the pitch name of the note on the line of fifths (see

Figure 4). Longuet-Higgins’s algorithm tries to spell the notes so that the distance on the line of fifths

between each note and the tonic at the point at which the note occurs is less than or equal to 6 (which

corresponds to a tritone). The algorithm assumes at the beginning of the music that the first note is

either the tonic or the dominant of the opening key and chooses between these two possibilities on the

basis of the interval between the first two notes. The algorithm also assumes that two consecutive notes

in the music are never separated by more than 12 steps on the line of fifths. In fact, if two consecutive

notes in the music are separated by more than 6 steps on the line of fifths, then the algorithm treats this

as evidence of a change of key.

Cambouropoulos’s algorithm

[0011] Cambouropoulos’s method involves first converting the input representation into a sequence

of pitch classes in which the pitch classes are in the order in which they occur in the music (the pitch

classes of notes that occur simultaneously being ordered arbitrarily—see Figure 5) (see Cambouropoulos,

E. (2003). Pitch spelling: A computational model. Music Perception, 20(4), 411–430.) The pitch class

of a note can be computed from its MIDI note number using the formula

PITCH CLASS = MIDI NOTE NUMBER mod 12.

[0012] Having derived an ordered set of pitch classes from the input, Cambouropoulos’s algorithm

then processes the music a window at a time, each window containing a fixed number of notes (between

9 and 15). Each window is positioned so that the first third of the window overlaps the last third of

the previous window. Cambouropoulos allows ‘white note’ pitch classes (i.e., 0, 2, 4, 5, 7, 9 and 11)

to be spelt in three different ways (e.g., pitch class 0 can be spelt as B], C\ or D[[) and ‘black note’

pitch classes to be spelt in two different ways (e.g., pitch class 6 can be spelt as F] or G[). Given these

restricted sets of possible pitch names for each pitch class, the algorithm computes all possible spellings

for each window. So, on average, if the window size is 9, there will be over 5000 possible spellings for

each window. A penalty score is then computed for each of these possible window spellings. The penalty

score for a given window spelling is found by computing a penalty value for the interval between every
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pair of notes in the window and summing these penalty values. A given interval in a particular window

spelling is penalised more heavily if it is an interval that occurs less frequently in the major and minor

scales. An interval is also penalised if either of the pitch names forming the interval is a double-sharp or

a double-flat. For each window, the algorithm chooses the spelling that has the lowest penalty score.

Temperley’s algorithm

[0013] Temperley’s pitch spelling algorithm is implemented in his harmony program which forms one

component of his and Sleator’s Melisma system (see Temperley, D. (2001). The Cognition of Basic

Musical Structures. MIT Press, Cambridge, MA.). The input to the harmony program must be in the

form of a “note-list” giving the MIDI note number of each note together with its onset time and duration

in milliseconds. Temperley’s pitch spelling algorithm searches for the spelling that best satisfies three

“preference rules”. The first of these rules stipulates that the algorithm should “prefer to label nearby

events so that they are close together on the line of fifths”. This rule bears some resemblance to the basic

principle underlying Longuet-Higgins’s algorithm (see above). The second rule expresses the principle

that if two tones are separated by a semitone and the first tone is distant from the key centre, then the

interval between them should preferably be spelt as a diatonic semitone rather than a chromatic one.

The third preference rule steers the algorithm towards spelling the notes so that what Temperley calls a

“good harmonic representation” results.

[0014] Note, however, that Temperley’s algorithm requires more information in its input than the

other algorithms. In particular, it needs to know the duration of each note and the tempo at each point

in the passage. It also needs to perform a full analysis of the metrical and harmonic structure of the

passage in order to generate a high quality result. Also, it cannot deal with cases where two or more

notes with the same pitch start at the same time.

Results of Running Algorithms on the First Book of J. S. Bach’s Das Wohltemperirte

Klavier

[0015] When the three algorithms described above were run on the first book of J. S. Bach’s Das

Wohltemperirte Klavier, the following results were obtained:

[0016]

Algorithm % notes correct Number of errors

Cambouropoulos 93.74 2599

Longuet-Higgins 99.36 265

Temperley 99.71 122

Total number of notes in corpus = 41544.
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[0017] As can be seen, on this corpus, Temperley’s algorithm performed best, making only 122

errors and spelling 99.71% of the notes correctly.

SUMMARY OF THE INVENTION

[0018] The invention described here consists of an algorithmic method called ps13 that reliably com-

putes the correct pitch names (e.g., C]4, B[5 etc.) of the notes in a passage of tonal music, when given

only the onset-time and MIDI note number of each note in the passage.

[0019] The ps13 algorithm has been shown to be more reliable than previous algorithms, correctly

predicting the pitch names of 99.33% of the notes in a test corpus containing 1729886 notes and consisting

of 1655 movements from works by 9 baroque and classical composers. This was shown to be significantly

greater than the percentage of notes in the same large corpus spelt correctly by the algorithms of Tem-

perley, Cambouropoulos and Longuet-Higgins. ps13 is faster than the algorithms of Temperley and

Cambouropoulos and requires less information in its input than Temperley’s algorithm.

[0020] The ps13 algorithm is best understood to be in two parts, Part I and Part II. Part I consists

of the following steps:

1. computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G} that n would have if p were the tonic at the point in the piece where

n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale on p);

2. computing for each note n in the input and each pitch class 0 ≤ p ≤ 11, a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of notes

immediately following n;

3. computing for each note n and each letter name l, the set of pitch classes C(n, l) = {p | S(p, n) = l}

(that is, the set of tonic pitch classes that would lead to n having the letter name l);

4. computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;

5. computing for each note n, the letter name l for which N(l, n) is a maximum.

[0021] Part II of the algorithm corrects those instances in the output of Part I where a neighbour

note or passing note is erroneously predicted to have the same letter name as either the note preceding

it or the note following it. Part II of ps13

1. lowers the letter name of every lower neighbour note for which the letter name predicted by Part I

is the same as that of the preceding note;
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2. raises the letter name of every upper neighbour note for which the letter name predicted by Part I

is the same as that of the preceding note;

3. lowers the letter name of every descending passing note for which the letter name predicted by Part

I is the same as that of the preceding note;

4. raises the letter name of every descending passing note for which the letter name predicted by Part

I is the same as that of the following note;

5. lowers the letter name of every ascending passing note for which the letter name predicted by Part

I is the same as that of the following note;

6. raises the letter name of every ascending passing note for which the letter name predicted by Part

I is the same as that of the preceding note.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 Examples of notes with identical MIDI note numbers being spelt differently in different tonal

contexts (from p. 8 of Piston, W. (1978). Harmony . Victor Gollancz Ltd., London. Revised and

expanded by Mark DeVoto).

Figure 2 Should the E[s be spelt as D]s? (From p. 390 of Piston, W. (1978). Harmony . Victor Gollancz

Ltd., London. Revised and expanded by Mark DeVoto).

Figure 3 (a) Bars 1 to 4 of Bach’s Fugue in D minor from Book 1 of Das Wohltemperirte Klavier (BWV

851). (b) The OPND representation of the score in (a).

Figure 4 The line of fifths

Figure 5 The first step in Cambouropoulos’s method involves converting the input representation into

a sequence of pitch classes. The music is processed a window at a time. Each window contains 9

notes and the first third of each window overlaps the last third of the previous window

Figure 6 Algorithm for computing the spelling table S.

Figure 7 Algorithm for computing the relative morph list R.

Figure 8 Algorithm for computing the chord list H.

Figure 9 Neighbour note and passing note errors corrected by ps13.

Figure 10 Algorithm for correcting neighbour note errors.
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Figure 11 Algorithm for correcting descending passing note errors.

Figure 12 Algorithm for correcting ascending passing note errors.

Figure 13 Algorithm for computing M ′.

Figure 14 Algorithm for computing P .

Figure 15 PPN algorithm.

DETAILED DESCRIPTION OF THE INVENTION

[0022] The invention consists of an algorithm, called ps13, that takes as input a representation of a

musical passage (or work or set of works) in the form of a set I of ordered pairs 〈t, pc〉, each pair giving

the onset time t and the chromatic pitch pc of a single note or sequence of tied notes. The chromatic

pitch of a note is an integer indicating the interval in semitones from A\0 to the pitch of the note (i.e.,

pc = MIDI NOTE NUMBER − 21). The set I may be trivially derived from a MIDI file representation

of the musical passage.

[0023] If ei = 〈ti, pc,i〉 and ej = 〈tj , pc,j〉 and ei, ej ∈ I then ei is defined to be less than ej , denoted

by ei < ej , if and only if ti < tj or (ti = tj ∧ pc,i < pc,j). Also, ei ≤ ej if and only if ei < ej or ei = ej .

[0024] The first step in ps13 is to sort the set I to give an ordered set

J =
〈
〈t1, pc,1〉 , 〈t2, pc,2〉 , . . .

〈
t|I|, pc,|I|

〉〉
(1)

containing all and only the elements of I, sorted into increasing order so that j > i⇒ 〈ti, pc,i〉 ≤ 〈tj , pc,j〉

for all 〈ti, pc,i〉 , 〈tj , pc,j〉 ∈ J .

[0025] The second step in ps13 is to compute the ordered set

C =
〈
c1, c2, . . . ck, . . . c|J|

〉
(2)

where ck = pc,k mod 12, pc,k being the chromatic pitch of the kth element of J . ck is the chroma of pc,k.

[0026] If A is an ordered set of elements,

A =
〈
a1, a2, . . . ak, . . . a|A|

〉
then let A[j] denote the (j + 1)th element of A (e.g., A[0] = a1, A[1] = a2). Also, let A[j, k] denote the

ordered set that contains all the elements of A from A[j] to A[k−1], inclusive (e.g., A[1, 4] = 〈a2, a3, a4〉).
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[0027] In addition to the set I, ps13 takes as input two numerical parameters, called the precontext,

denoted by Kpre, and the postcontext, denoted by Kpost. The precontext must be an integer greater than

or equal to 0 and the postcontext must be an integer greater than 0. The third step in ps13 is to compute

the ordered set

Φ = 〈φ(C[0]), φ(C[1]), . . . φ(C[k]), . . . φ(C[|C| − 1])〉 (3)

where

φ(C[k]) = 〈CNT(0, k),CNT(1, k), . . . CNT(11, k)〉 (4)

and CNT(c, k) returns the number of times that the chroma c occurs in the ordered set

C[max({0, k −Kpre}),min({|C|, k + Kpost})] (the functions max(B) and min(B) return the greatest and

least values, respectively, in the set B).

[0028] Every pitch name has three parts: a letter name which must be a mem-

ber of the set {A,B,C,D,E,F,G}; an inflection which must be a member of the infinite set

{. . . , ] , , ], \, [, [[, [[[, [[[[, . . .}; and an octave number which must be an integer. By convention,

if the inflection of a pitch name is equal to \ it may be omitted, for example, C\4 may be written C4.

The octave number of ‘middle C’ is 4 and the octave number of any other C is one greater than the next

C below it on the staff and one less than the next C above it on the staff. The octave number of any

pitch name whose letter name is not C is the same as that of the nearest C below it on the staff. Thus

B 3 sounds one semitone higher than C4 and C[4 has the same sounding pitch as B\3.

[0029] If N is a pitch name with letter name l(N) and octave number o(N), then the morph of

N , denoted by m(N), is given by the following table

l(N) A B C D E F G

m(N) 0 1 2 3 4 5 6

The morphetic octave of N , denoted by om(N), is given by

om(N) =


o(N), if m = 0 or m = 1,

o(N)− 1, otherwise.
(5)

The morphetic pitch of N , denoted by pm(N), is given by

pm(N) = m(N) + 7om(N). (6)

[0030] The fourth step in ps13 is to compute the spelling table, S. This is done using the algorithm

expressed in pseudo-code in Figure 6. In the pseudo-code used in this specification, block structure is
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indicated by indentation and the symbol “←” is used to denote assignment of a value to a variable (i.e.,

the expression “x ← y” means “the value of variable x becomes equal to the value of y”). The symbol

“⊕” is used to denote concatenation of ordered sets. Thus, if A and B are two ordered sets such that

A =
〈
a1, a2, . . . a|A|

〉
and B =

〈
b1, b2, . . . b|B|

〉
, then

A⊕B =
〈
a1, a2, . . . a|A|, b1, b2, . . . b|B|

〉
.

Also, A⊕ 〈 〉 = 〈 〉 ⊕A = A.

[0031] Having computed the spelling table S, the algorithm goes on to compute the relative morph

list, R. This is computed using the algorithm in Figure 7. If A is an ordered set of ordered sets, then

A[i][j] denotes the (j + 1)th element of the (i + 1)th element of A. The expression S[k][i] in line 6 of

Figure 7 therefore denotes the (i + 1)th element of the (k + 1)th element of the spelling table S. If L is

an ordered set and i is the value of at least one element of L, then the function POS(i, L) called in line

10 of Figure 7 returns the least value of k for which L[k] = i.

[0032] The next step in ps13 is to compute the initial morph minit which is given by

minit = Qinit[C[0]] (7)

where Qinit = 〈0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6〉.

[0033] Next, ps13 computes the morph list, M , which satisfies the following condition

(|M | = |C|) ∧ (M [i] = (R[i] + minit) mod 7 for all 0 ≤ i < |C|). (8)

[0034] Next, the ordered set O is computed which satisfies the following condition

(|O| = |C|) ∧ (O[i] = 〈J [i][0], C[i], M [i]〉 for all 0 ≤ i < |C|). (9)

[0035] Next, an ordered set H called the chord list is computed using the algorithm in Figure 8.

[0036] In the next three steps, the algorithm ensures that neighbour note and passing note figures

are spelt correctly. Figure 9 illustrates the six types of error corrected by the algorithm. Figure 9a shows

a lower neighbour note figure that is incorrectly spelt because the neighbour note (the middle note) has

the same morphetic pitch as the two flanking notes. In this case, the morphetic pitch of the neighbour

note is one greater than it should be. Figure 9b shows a similar error in the case of an upper neighbour

note figure. In this case, the morphetic pitch of the neighbour note is one less than it should be. The

passing note figures in Figure 9c and d are incorrect because the morphetic pitch of the passing note (the

middle note) is one greater than it should be. Finally, the passing note figures in Figure 9e and f are

10/24



incorrect because the morphetic pitch of the passing note is one less than it should be.

[0037] ps13 first corrects errors like the ones in Figure 9a and b using the algorithm in Fig-

ure 10. If A is an ordered set of ordered sets then the expression A[i][j, k] denotes the ordered set

〈A[i][j], A[i][j + 1], . . . A[i][k − 1]〉. Thus, the expression H[i+2][k][1, 3] in line 4 of Figure 10 denotes the

ordered set 〈H[i + 2][k][1],H[i + 2][k][2]〉. In Figure 9a and b, the neighbour note is one semitone away

from the flanking notes. The algorithm in Figure 10 also corrects instances where the neighbour note is

2 semitones above or below the flanking notes but has the same morphetic pitch as the flanking notes.

[0038] Next, ps13 corrects errors like the ones in Figure 9c and e using the algorithm in Figure 11.

Then it corrects errors like the ones in Figure 9d and f using the algorithm in Figure 12. In Figure 9c,

d, e and f, the interval between the flanking notes is a minor third. The algorithms in Figures 11 and 12

also correct instances where the interval between the flanking notes is a major third.

[0039] Having corrected neighbour note and passing note errors, ps13 then computes a new morph

list M ′ using the algorithm in Figure 13.

[0040] Having computed M ′, it is now possible to compute a morphetic pitch for each note. This

can be done using the algorithm in Figure 14 which computes the ordered set of morphetic pitches, P .

[0041] Finally, from J and P , ps13 computes a representation Z which satisfies the following

condition

(|Z| = |J |) ∧ (Z[i] = 〈J [i][0],PPN(〈J [i][1], P [i]〉)〉 for all 0 ≤ i < |Z|). (10)

The function PPN(〈pc, pm〉) returns the unique pitch name whose chromatic pitch is pc and whose

morphetic pitch is pm. This function can be computed using the algorithm in Figure 15. In this algorithm,

anything in double inverted commas (“?”) is a string—that is, an ordered set of characters. If A and

B are strings such that A = “abcdef” and B = “ghijkl”, then the concatenation of A onto B, denoted

by A⊕B, is “abcdefghijkl”. In the pitch names generated by PPN, the sharp signs are represented by

‘s’ characters and the flat signs are represented by ‘f’ characters. A double sharp is represented by the

string “ss”. For example, the pitch name C 4 is represented in PPN by the string “Css4”. The empty

string is denoted by “” and the function STR(n) called in line 23 returns a string representation of the

number n. For example, STR(−5) = “− 5”,STR(105.6) = “105.6”.

Results of running ps13 on the first book of J. S. Bach’s Das Wohltemperirte

Klavier

[0042] As explained above, ps13 takes as input a set I of ordered pairs, 〈t, pc〉, each one giving the

onset time and chromatic pitch of each note. In addition, ps13 requires two numerical parameters, the

precontext, Kpre, and the postcontext, Kpost.
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[0043] In order to explore the effect that varying the values of Kpre and Kpost has on the perfor-

mance of ps13, the algorithm was run 2500 times on the first book of J. S. Bach’s Das Wohltemperirte

Klavier, each time using a different pair of values 〈Kpre,Kpost〉 chosen from the set

{〈Kpre,Kpost〉 | 1 ≤ Kpre ≤ 50 ∧ 1 ≤ Kpost ≤ 50} .

For each pair of values 〈Kpre,Kpost〉, the number of errors made by ps13 on the test corpus was recorded.

[0044] It was found that ps13 made fewer than 122 mistakes (i.e., performed better than Temper-

ley’s algorithm) on this smaller test corpus for 2004 of the 2500 〈Kpre,Kpost〉 pairs tested (i.e., 80.160%

of the 〈Kpre,Kpost〉 pairs tested).

[0045] ps13 performed best on this test corpus when Kpre was set to 33 and Kpost was set to either

23 or 25. With these parameter values, ps13 made only 81 errors on this test corpus—that is, it correctly

predicted the pitch names of 99.81% of the notes in this test corpus.

[0046] The mean number of errors made by ps13 over all 2500 〈Kpre,Kpost〉 pairs was 109.082

(i.e., 99.74% of the notes were correctly spelt on average over all 2500 〈Kpre,Kpost〉 pairs). This average

value was better than the result obtained by Temperley’s algorithm for this test corpus. The standard

deviation in the accuracy over all 2500 〈Kpre,Kpost〉 pairs was 0.08%.

Results of running ps13 on the larger test corpus

[0047] ps13 and the algorithms of Temperley, Cambouropoulos and Longuet-Higgins were then run

on a much larger corpus containing 1729886 notes and consisting of 1655 movements from works by 9

baroque and classical composers (Corelli, Vivaldi, Telemann, Bach, Handel, B. Marcello, Haydn, Mozart

and Beethoven). The values of Kpre and Kpost for ps13 were set to 33 and 23, respectively, these being

the values that produced the best results when the algorithm was run on the smaller corpus in the pilot

study. The percentage of notes in the larger test corpus spelt correctly by each of the four algorithms

was as follows:

[0048]

ps13 Cambouropoulos Temperley Longuet-Higgins

99.33% 98.71% 97.67% 97.65%

[0049] The results were analysed using McNemar’s test and it was shown that ps13 spelt signif-

icantly more notes correctly than Cambouropoulos’s algorithm (p < 0.0001) which in turn spelt signif-

icantly more notes correctly than the algorithms of Temperley and Longuet-Higgins (p < 0.0001). The

difference between the scores achieved by Temperley and Longuet-Higgins was not significant (p = 0.0954).
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[0050] These results suggest that ps13 generally spells a greater proportion of the notes in tonal

works correctly than previous pitch spelling algorithms.
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APPENDIX: LISP IMPLEMENTATION OF ps13

[0051] A Lisp implementation of ps13 is given below. In this implementation it is assumed that the

input representation is a list of sublists, each sublist taking the form (t pc d) where t, pc and d are the

onset time, chromatic pitch and duration, respectively, of a single note. For example, the passage in

Figure 3a would be represented by the list

[0052]

((2 41 2) (4 43 2) (6 44 2) (8 46 2) (10 43 2) (12 44 1) (13 41 1) (14 40 1)

(15 41 1) (16 49 4) (20 46 4) (24 48 5) (26 36 2) (28 38 2) (29 46 1)

(30 39 2) (30 44 1) (31 43 1) (32 41 2) (32 46 1) (33 44 1) (34 38 2)

(34 43 1) (35 41 1) (36 39 1) (36 43 2) (37 36 1) (38 35 1) (38 51 3)

(39 36 1) (40 44 4) (41 50 1) (42 48 1) (43 50 1) (44 41 4) (44 50 1)

(45 48 1) (46 47 1) (47 48 1))

[0053] Similarly, the output of the Lisp implementation of ps13 given below is represented as a

list of sublists. For example, the output of this implementation of ps13 for the passage given in Figure 3a

is

[0054]

((2 "Dn4" 2) (4 "En4" 2) (6 "Fn4" 2) (8 "Gn4" 2) (10 "En4" 2) (12 "Fn4" 1)

(13 "Dn4" 1) (14 "Cs4" 1) (15 "Dn4" 1) (16 "Bf4" 4) (20 "Gn4" 4) (24 "An4" 5)

(26 "An3" 2) (28 "Bn3" 2) (29 "Gn4" 1) (30 "Cn4" 2) (30 "Fn4" 1) (31 "En4" 1)

(32 "Dn4" 2) (32 "Gn4" 1) (33 "Fn4" 1) (34 "Bn3" 2) (34 "En4" 1) (35 "Dn4" 1)

(36 "Cn4" 1) (36 "En4" 2) (37 "An3" 1) (38 "Gs3" 1) (38 "Cn5" 3) (39 "An3" 1)

(40 "Fn4" 4) (41 "Bn4" 1) (42 "An4" 1) (43 "Bn4" 1) (44 "Dn4" 4) (44 "Bn4" 1)

(45 "An4" 1) (46 "Gs4" 1) (47 "An4" 1))

[0055] Here is the Lisp code for an implementation of ps13:

(defun ps13 (&optional (input-filename (choose-file-dialog))

(pre-context 33)

(post-context 23))

(let* ((sorted-input-representation

(remove-duplicates

(sort (with-open-file (input-file

input-filename)

(read input-file))

#’vector-less-than)

:test #’equalp))

(onset-list (mapcar #’first sorted-input-representation))

(chromatic-pitch-list

(mapcar #’second sorted-input-representation))

(chroma-list

(mapcar #’chromatic-pitch-chroma chromatic-pitch-list))

(n (list-length chroma-list))

(chroma-vector-list

(do* ((cvl nil)

(i 0 (1+ i)))

((= i n)

cvl)

(setf cvl

(append cvl

(list

(do* ((context

(subseq chroma-list
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(max 0 (- i pre-context))

(min n (+ i post-context))))

(cv (list 0 0 0 0 0 0 0 0 0 0 0 0))

(c 0 (+ 1 c)))

((= c 12)

cv)

(setf (elt cv c)

(count c context))))))))

(chromamorph-table (list 0 1 1 2 2 3 3 4 5 5 6 6))

(spelling-table

(do* ((first-morph nil nil)

(spelling nil nil)

(spelling2 nil nil)

(st nil)

(c 0 (1+ c)))

((= c 12)

st)

(setf spelling

(mapcar #’(lambda (chroma-in-chroma-list)

(elt chromamorph-table

(mod (- chroma-in-chroma-list c) 12)))

chroma-list))

(setf first-morph (first spelling))

(setf spelling2

(mapcar #’(lambda (morph-in-spelling)

(mod (- morph-in-spelling first-morph) 7))

spelling))

(setf st (append st (list spelling2)))))

(relative-morph-list

(do ((morph-vector (list 0 0 0 0 0 0 0)

(list 0 0 0 0 0 0 0))

(rml nil)

(i 0 (1+ i))

(morphs-for-this-chroma nil

nil)

)

((= i n)

rml)

(setf morphs-for-this-chroma

(mapcar #’(lambda (spelling)

(elt spelling i))

spelling-table))

(setf rml

(do ((prev-score nil nil)

(j 0 (1+ j)))

((= j 12)

;(pprint morph-vector)

(append rml

(list (position

(apply #’max morph-vector)

morph-vector))))

(setf prev-score

(elt morph-vector

(elt morphs-for-this-chroma j)))

(setf (elt morph-vector

(elt morphs-for-this-chroma j))

(+ prev-score

(elt (elt chroma-vector-list i) j)))))))

(initial-morph (elt ’(0 1 1 2 2 3 4 4 5 5 6 6)

(mod (first chromatic-pitch-list) 12)))

(morph-list (mapcar #’(lambda (relative-morph)
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(mod (+ relative-morph initial-morph) 7))

relative-morph-list))

(ocm (mapcar #’list onset-list chroma-list morph-list))

(ocm-chord-list (do* ((cl (list (list (first ocm))))

(i 1 (1+ i)))

((= i n)

cl)

(if (= (first (elt ocm i))

(first (elt ocm (1- i))))

(setf (first (last cl))

(append (first (last cl))

(list (elt ocm i))))

(setf cl

(append cl

(list (list (elt ocm i))))))))

(number-of-chords (list-length ocm-chord-list))

;neighbour notes

(ocm-chord-list

(do* ((i 0 (1+ i)))

((= i (- number-of-chords 2))

ocm-chord-list)

(dolist (note1 (elt ocm-chord-list i))

(if (member (cdr note1)

(mapcar #’cdr (elt ocm-chord-list (+ i 2)))

:test #’equalp)

(dolist (note2 (elt ocm-chord-list (1+ i)))

(if (= (third note2)

(third note1))

(progn

(if (member (mod (- (second note2) (second note1))

12)

’(1 2))

(setf (third note2)

(mod (+ 1 (third note2)) 7)))

(if (member (mod (- (second note1) (second note2))

12)

’(1 2))

(setf (third note2)

(mod (- (third note2) 1) 7))))))))))

;downward passing notes

(ocm-chord-list

(do* ((i 0 (1+ i)))

((= i (- number-of-chords 2))

ocm-chord-list)

(dolist (note1 (elt ocm-chord-list i))

(dolist (note3 (elt ocm-chord-list (+ i 2)))

(if (= (third note3) (mod (- (third note1) 2) 7))

(dolist (note2 (elt ocm-chord-list (1+ i)))

(if (and (or (= (third note2)

(third note1))

(= (third note2)

(third note3)))

(< 0

(mod (- (second note1) (second note2))

12)

(mod (- (second note1) (second note3))

12)))

(unless (remove-if

#’null

(mapcar

#’(lambda (note)
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(/= (second note)

(second note2)))

(remove-if

#’null

(mapcar

#’(lambda (note)

(if (= (third note)

(mod (- (third note1) 1)

7))

note))

(elt ocm-chord-list (1+ i))))))

(setf (third note2)

(mod (- (third note1) 1) 7))))))))))

;upward passing notes

(ocm-chord-list

(do* ((i 0 (1+ i)))

((= i (- number-of-chords 2))

ocm-chord-list)

(dolist (note1 (elt ocm-chord-list i))

(dolist (note3 (elt ocm-chord-list (+ i 2)))

(if (= (third note3) (mod (+ (third note1) 2) 7))

(dolist (note2 (elt ocm-chord-list (1+ i)))

(if (and (or (= (third note2)

(third note1))

(= (third note2)

(third note3)))

(< 0

(mod (- (second note3) (second note2))

12)

(mod (- (second note3) (second note1))

12)))

(unless (remove-if

#’null

(mapcar

#’(lambda (note)

(/= (second note)

(second note2)))

(remove-if

#’null

(mapcar #’(lambda (note)

(if (= (third note)

(mod (+ (third note1)

1)

7))

note))

(elt ocm-chord-list (1+ i))))))

(setf (third note2)

(mod (+ (third note1) 1) 7))))))))))

(morph-list (mapcar #’third (apply #’append ocm-chord-list)))

(morphetic-pitch-list

(mapcar #’(lambda (chromatic-pitch morph)

(let* ((morphetic-octave1 (floor chromatic-pitch 12))

(morphetic-octave2 (+ 1 morphetic-octave1))

(morphetic-octave3 (- morphetic-octave1 1))

(mp1 (+ morphetic-octave1 (/ morph 7)))

(mp2 (+ morphetic-octave2 (/ morph 7)))

(mp3 (+ morphetic-octave3 (/ morph 7)))

(chroma (mod chromatic-pitch 12))

(cp (+ morphetic-octave1 (/ chroma 12)))

(difference-list (list (abs (- cp mp1))

(abs (- cp mp2))
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(abs (- cp mp3))))

(morphetic-octave-list (list morphetic-octave1

morphetic-octave2

morphetic-octave3))

(best-morphetic-octave

(elt morphetic-octave-list

(position (apply #’min difference-list)

difference-list))))

(+ (* 7 best-morphetic-octave) morph)))

chromatic-pitch-list

morph-list))

(opd (mapcar #’(lambda (tpcd-triple morphetic-pitch)

(list (first tpcd-triple)

(list (second tpcd-triple)

morphetic-pitch)

(third tpcd-triple)))

sorted-input-representation

morphetic-pitch-list))

(opnd (mapcar #’(lambda (opd-datapoint)

(list (first opd-datapoint)

(p-pn (second opd-datapoint))

(third opd-datapoint)))

opd)))

opnd))

(defun chromatic-pitch-chroma (chromatic-pitch)

(mod chromatic-pitch 12))

(defun vector-less-than (v1 v2)

(cond ((null v2) nil)

((null v1) t)

((< (first v1) (first v2)) t)

((> (first v1) (first v2)) nil)

(t (vector-less-than (cdr v1) (cdr v2)))))

(defun p-pn (p)

(let* ((m (p-m p))

(l (elt ’("A" "B" "C" "D" "E" "F" "G") m))

(gc (p-gc p))

(cdash (elt ’(0 2 3 5 7 8 10) m))

(e (- gc cdash))

(i "")

(i (cond ((< e 0)

(dotimes (j (- e) i)

(setf i (concatenate ’string i "f"))))

((> e 0)

(dotimes (j e i)

(setf i (concatenate ’string i "s"))))

((= e 0) "n")))

(om (p-om p))

(oasa (if (or (= m 0) (= m 1))

om

(+ 1 om)))

(o (format nil "~D" oasa)))

(concatenate ’string l i o)))

(defun p-om (p)

(div (p-pm p) 7))

(defun p-pm (p)

(second p))
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(defun div (x y)

(int (/ x y)))

(defun int (x)

(values (floor x)))

(defun p-gc (p)

(- (p-pc p)

(* 12 (p-om p))))

(defun p-pc (p)

(first p))

(defun p-m (p)

(bmod (p-pm p) 7))

(defun bmod (x y)

(- x

(* y

(int (/ x y)))))
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CLAIMS

I claim:

1. A method for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation of music

in which at least the onset time and MIDI note number (or chromatic pitch) of each note is given

or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);

(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;

(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

2. A method for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation of music

in which at least the onset time and MIDI note number (or chromatic pitch) of each note is given

or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);
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(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;

(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

(f) correcting those errors in the output of the previous step in which a neighbour note or passing

note is erroneously predicted to have the same letter name as either the note preceding it or

the note following it, involving

i. lowering the letter name of every lower neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

ii. raising the letter name of every upper neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

iii. lowering the letter name of every descending passing note for which the letter name pre-

dicted in step (e) is the same as that of the preceding note;

iv. raising the letter name of every descending passing note for which the letter name predicted

in step (e) is the same as that of the following note;

v. lowering the letter name of every ascending passing note for which the letter name pre-

dicted in step (e) is the same as that of the following note;

vi. raising the letter name of every ascending passing note for which the letter name predicted

in step (e) is the same as that of the preceding note.

3. Computer software for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation

of music in which at least the onset time and MIDI note number (or chromatic pitch) of each note

is given or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);

(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;
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(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

4. Computer software for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation

of music in which at least the onset time and MIDI note number (or chromatic pitch) of each note

is given or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);

(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;

(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

(f) correcting those errors in the output of the previous step in which a neighbour note or passing

note is erroneously predicted to have the same letter name as either the note preceding it or

the note following it, involving

i. lowering the letter name of every lower neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

ii. raising the letter name of every upper neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

iii. lowering the letter name of every descending passing note for which the letter name pre-

dicted in step (e) is the same as that of the preceding note;

iv. raising the letter name of every descending passing note for which the letter name predicted

in step (e) is the same as that of the following note;

v. lowering the letter name of every ascending passing note for which the letter name pre-

dicted in step (e) is the same as that of the following note;

vi. raising the letter name of every ascending passing note for which the letter name predicted

in step (e) is the same as that of the preceding note.
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5. Computer hardware for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation

of music in which at least the onset time and MIDI note number (or chromatic pitch) of each note

is given or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);

(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;

(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

6. Computer hardware for computing the pitch names (i.e., C]4, B[3, etc.) of notes in a representation

of music in which at least the onset time and MIDI note number (or chromatic pitch) of each note

is given or can be trivially computed, comprising the steps of

(a) computing for each pitch class 0 ≤ p ≤ 11 and each note n in the input, the pitch letter name

S(p, n) ∈ {A,B,C, D, E, F,G}, that n would have if p were the tonic at the point in the piece

where n occurs (assuming that the notes are spelt as they are in the harmonic chromatic scale

on p);

(b) computing for each note n in the input and each pitch class 0 ≤ p ≤ 11 a value CNT(p, n)

giving the number of times that p occurs within a context surrounding n that includes n, some

specified number Kpre of notes immediately preceding n and some specified number Kpost of

notes immediately following n;

(c) computing for each note n and each letter name l, the set of pitch classes C(n, l) =

{p | S(p, n) = l} (that is, the set of tonic pitch classes that would lead to n having the let-

ter name l);

(d) computing N(l, n) =
∑

p∈C(n,l)

CNT(p, n) for each note n and each pitch letter name l;
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(e) computing for each note n, the letter name l for which N(l, n) is a maximum.

(f) correcting those errors in the output of the previous step in which a neighbour note or passing

note is erroneously predicted to have the same letter name as either the note preceding it or

the note following it, involving

i. lowering the letter name of every lower neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

ii. raising the letter name of every upper neighbour note for which the letter name predicted

in step (e) is the same as that of the preceding note;

iii. lowering the letter name of every descending passing note for which the letter name pre-

dicted in step (e) is the same as that of the preceding note;

iv. raising the letter name of every descending passing note for which the letter name predicted

in step (e) is the same as that of the following note;

v. lowering the letter name of every ascending passing note for which the letter name pre-

dicted in step (e) is the same as that of the following note;

vi. raising the letter name of every ascending passing note for which the letter name predicted

in step (e) is the same as that of the preceding note.
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ABSTRACT

METHOD OF COMPUTING THE PITCH NAMES OF

NOTES IN MIDI-LIKE MUSIC REPRESENTATIONS

The invention described here consists of an algorithmic method called ps13 that reliably computes

the correct pitch names (e.g., C]4, B[5 etc.) of the notes in a passage of tonal music, when given only

the onset-time and MIDI note number of each note in the passage. The ps13 algorithm has been shown

to be more reliable than previous algorithms, correctly predicting the pitch names of 99.33% of the notes

in a test corpus containing 1729886 notes and consisting of 1655 movements from works by 9 baroque

and classical composers. This was shown to be significantly greater than the percentage of notes in the

same large corpus spelt correctly by the algorithms of Temperley, Cambouropoulos and Longuet-Higgins.

ps13 is faster than the algorithms of Temperley and Cambouropoulos and requires less information in its

input than Temperley’s algorithm.
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Figure 1: Examples of notes with identical MIDI note numbers being spelt differently in different tonal
contexts (from p. 8 of Piston, W. (1978). Harmony . Victor Gollancz Ltd., London. Revised and expanded
by Mark DeVoto).
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Figure 2: Should the E[s be spelt as D]s? (From p. 390 of Piston, W. (1978). Harmony . Victor Gollancz
Ltd., London. Revised and expanded by Mark DeVoto).
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(a)

(b)

{ 〈2, D4, 2〉, 〈4, E4, 2〉, 〈6, F4, 2〉, 〈8, G4, 2〉, 〈10, E4, 2〉, 〈12, F4, 1〉,
〈13, D4, 1〉, 〈14, CS4, 1〉, 〈15, D4, 1〉, 〈16, BF4, 4〉, 〈20, G4, 4〉, 〈24, A4, 5〉,
〈29, G4, 1〉, 〈30, F4, 1〉, 〈31, E4, 1〉, 〈32, G4, 1〉, 〈33, F4, 1〉, 〈34, E4, 1〉,
〈35, D4, 1〉, 〈36, E4, 2〉, 〈38, C5, 3〉, 〈41, B4, 1〉, 〈42, A4, 1〉, 〈43, B4, 1〉,
〈44, B4, 1〉, 〈45, A4, 1〉, 〈46, GS4, 1〉, 〈47, A4, 1〉, 〈26, A3, 2〉, 〈28, B3, 2〉,
〈30, C4, 2〉, 〈32, D4, 2, 〉, 〈34, B3, 2〉, 〈36, C4, 1〉, 〈37, A3, 1〉, 〈38, GS3, 1〉,
〈39, A3, 1〉, 〈40, F4, 4〉, 〈44, D4, 4〉 }

Figure 3: (a) Bars 1 to 4 of Bach’s Fugue in D minor from Book 1 of Das Wohltemperirte Klavier (BWV
851). (b) The OPND representation of the score in (a).
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Figure 4: The line of fifths
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?

5 9 7 5 4 7 5 2 4 0

Figure 5: The first step in Cambouropoulos’s method involves converting the input representation into a
sequence of pitch classes. The music is processed a window at a time. Each window contains 9 notes and
the first third of each window overlaps the last third of the previous window
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1 S ← 〈 〉
2 Q← 〈0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6〉
3 for c← 0 to 11
4 m0 ← 0
5 s← 〈 〉
6 s′ ← 〈 〉
7 for i← 0 to |C| − 1
8 s← s⊕ 〈Q[(C[i]− c) mod 12]〉
9 m0 ← s[0]
10 for i← 0 to |C| − 1
11 s′ ← s′ ⊕ 〈(s[i]−m0) mod 7〉
12 S ← S ⊕ 〈s′〉
13 return S

Figure 6: Algorithm for computing the spelling table S.

m



7/15

m

1 R← 〈 〉
2 for i← 0 to |C| − 1
3 V ← 〈0, 0, 0, 0, 0, 0, 0〉
4 µ← 〈 〉
5 for k ← 0 to 11
6 µ← µ⊕ 〈S[k][i]〉
7 for j ← 0 to 11
8 sprev ← V [µ[j]]
9 V [µ[j]]← sprev + Φ[i][j]
10 R← R⊕ 〈POS(max(V ), V )〉
11 return R

Figure 7: Algorithm for computing the relative morph list R.
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1 H ← 〈〈O[0]〉〉
2 for i← 1 to |C| − 1
3 if O[i][0] = O[i− 1][0]
4 H[|H| − 1]← H[|H| − 1]⊕ 〈O[i]〉
5 else
6 H ← H ⊕ 〈〈O[i]〉〉
7 return H

Figure 8: Algorithm for computing the chord list H.
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Figure 9: Neighbour note and passing note errors corrected by ps13.
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1 for i← 0 to |H| − 3
2 ζ ← 〈 〉
3 for k ← 0 to |H[i + 2]| − 1
4 ζ ← ζ ⊕ 〈H[i + 2][k][1, 3]〉
5 for n1 ← 0 to |H[i]| − 1
6 if H[i][n1][1, 3] ∈ ζ
7 for n2 ← 0 to |H[i + 1]| − 1
8 if H[i + 1][n2][2] = H[i][n1][2]
9 if (H[i + 1][n2][1]−H[i][n1][1]) mod 12 ∈ {1, 2}
10 H[i + 1][n2][2]← (H[i + 1][n2][2] + 1) mod 7
11 if (H[i][n1][1]−H[i + 1][n2][1]) mod 12 ∈ {1, 2}
12 H[i + 1][n2][2]← (H[i + 1][n2][2]− 1) mod 7
13 return H

Figure 10: Algorithm for correcting neighbour note errors.
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1 for i← 0 to |H| − 3
2 for n1 ← 0 to |H[i]| − 1
3 for n3 ← 0 to |H[i + 2]| − 1
4 if H[i + 2][n3][2] = (H[i][n1][2]− 2) mod 7
5 for n2 ← 0 to |H[i + 1]| − 1
6 if H[i + 1][n2][2] = H[i][n1][2] or H[i + 1][n2][2] = H[i + 2][n3][2]
7 if 0 < (H[i][n1][1]−H[i + 1][n2][1]) mod 12 < (H[i][n1][1]−H[i + 2][n3][1]) mod 12
8 ζ ← 〈 〉
9 for j ← 0 to |H[i + 1]| − 1
10 if H[i + 1][j][2] = (H[i][n1][2]− 1) mod 7
11 ζ ← ζ ⊕ 〈H[i + 1][j]〉
12 θ ← 〈 〉
13 for j ← 0 to |ζ| − 1
14 if H[i + 1][n2][1] 6= ζ[j][1]
15 θ ← θ ⊕ 〈ζ[j]〉
16 if θ = 〈 〉
17 H[i + 1][n2][2]← (H[i][n1][2]− 1) mod 7
18 return H

Figure 11: Algorithm for correcting descending passing note errors.
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1 for i← 0 to |H| − 3
2 for n1 ← 0 to |H[i]| − 1
3 for n3 ← 0 to |H[i + 2]| − 1
4 if H[i + 2][n3][2] = (H[i][n1][2] + 2) mod 7
5 for n2 ← 0 to |H[i + 1]| − 1
6 if H[i + 1][n2][2] = H[i][n1][2] or H[i + 1][n2][2] = H[i + 2][n3][2]
7 if 0 < (H[i + 2][n3][1]−H[i + 1][n2][1]) mod 12 < (H[i + 2][n3][1]−H[i][n1][1]) mod 12
8 ζ ← 〈 〉
9 for j ← 0 to |H[i + 1]| − 1
10 if H[i + 1][j][2] = (H[i][n1][2] + 1) mod 7
11 ζ ← ζ ⊕ 〈H[i + 1][j]〉
12 θ ← 〈 〉
13 for j ← 0 to |ζ| − 1
14 if H[i + 1][n2][1] 6= ζ[j][1]
15 θ ← θ ⊕ 〈ζ[j]〉
16 if θ = 〈 〉
17 H[i + 1][n2][2]← (H[i][n1][2] + 1) mod 7
18 return H

Figure 12: Algorithm for correcting ascending passing note errors.
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1 O′ ← 〈 〉
2 for i← 0 to |H| − 1
3 O′ ← O′ ⊕H[i]
4 M ′ ← 〈 〉
5 for i← 0 to |O′| − 1
6 M ′ ←M ′ ⊕ 〈O′[i][2]〉
7 return M ′

Figure 13: Algorithm for computing M ′.
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1 P ← 〈 〉
2 for i← 0 to |J | − 1
3 o1 ← bJ [i][1]/12c
4 o2 ← 1 + o1

5 o3 ← o1 − 1
6 p1 ← o1 + M ′[i]/7
7 p2 ← o2 + M ′[i]/7
8 p3 ← o3 + M ′[i]/7
9 c← J [i][1] mod 12
10 p′ ← o1 + c/12
11 D ← 〈|p′ − p1|, |p′ − p2|, |p′ − p3|〉
12 ω ← 〈o1, o2, o3〉
13 o← ω[POS(min(D), D)]
14 P ← P ⊕ 〈M ′[i] + 7o〉
15 return P

Figure 14: Algorithm for computing P .
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PPN(p)
1 m← p[1] mod 7
2 L← 〈“A”, “B”, “C”, “D”, “E”, “F”, “G”〉
3 l← L[m]
4 gc ← p[0]− 12(bp[1]/7c)
5 A← 〈0, 2, 3, 5, 7, 8, 10〉
6 c′ ← A[m]
7 e← gc − c′

8 i← “”
9 if e < 0
10 for j ← 0 to −e− 1
11 i← i⊕ “f”
12 else
13 if e > 0
14 for j ← 0 to e− 1
15 i← i⊕ “s”
16 else
17 i← “n”
18 om ← bp[1]/7c
19 if m = 0 or m = 1
20 o← om

21 else
22 o← 1 + om

23 ostr ← STR(o)
24 return l ⊕ i⊕ ostr

Figure 15: PPN algorithm.
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